Automated Labour

Friday 29 April 2016

Automated Labour


The robots among us: automated labour

  1. Robots are currently used across a range of areas, including in shipping, mining, agriculture and retail.
  2. Robots can improve efficiency and productivity in many industries, and carry out some jobs that humans are unable to perform.
  3. An important role of robots is their ability to discover and interpret information, including compiling large or multiple data sets. 
Think robot, and we generally think of those from our science fiction stories. There are friendly robots from Star Wars like C-3PO, R2-D2 and BB-8; the slightly more sinister ‘helper’ robots from Isaac Asimov’s ‘I, Robot’; or, even worse, the robotic assassins in the future portrayed by the Terminator series. These characters are just that: sci-fi inventions, either from a universe far, far away, or a future so removed from our current lives we’re not sure when (or even if) they will become reality.
But when it actually comes down to it, robots are already here. Just think of those little chappies zooming around vacuuming people’s floors—the ones that some people affectionately stick googly eyes on, or give a name. And even more powerful are the robots that are doing a huge amount of work that most of us just take for granted—a massive amount of labour that underpins so much of industry. These robots are working in a container port near you, or hunting down and spraying the weeds in the fields that produce the vegetables you buy in the supermarket. While they may not be as sleek or fancy as the ones from our sci-fi stories, they are actually here, right now, doing work so that humans don’t have to.
Automated labour can completely transform the way many industrial activities are conducted. Large-scale labour can be revolutionised by automation and, with its strong mining and agricultural industries, Australia is the perfect playground in which to put robots to work.
Transforming industry

SHIPPING/PORTS

The Port of Brisbane and the Port of Botany Bay in Sydney both function with a minimum of human input.
All the imports that come through these ports—much of our furniture, electronics, computers and appliances—are delivered from ship to shore by cranes and then shuffled around the terminal by automated straddle carriers (big four-legged frame structures with wheels that can carry a shipping container) and trucks.
The Port of Brisbane kicked things off by putting 35 automated straddle carriers (AutoStrads) into action in 2007, after a 10-year development period. In 2015, 50 AutoStrads took over operations at Sydney’s Port Botany, making it the largest outdoor autonomous system in the world. Just one person is required to oversee the workings of the entire container yard.
So, how do these robots do their work? There were three key components involved in building the AutoStrads:


  • development of a navigation system that was reliable and guaranteed to be accurate
  • control of a large, heavy vehicle that was capable of carrying heavy loads 
  • design of an entire autonomous system that is predictable, efficient, repeatable and predictable.
The AutoStrad vehicle was modelled on a standard manned straddle carrier. It’s around 10 metres high, 3.5 metres wide and 9 metres long, and weighs around 65 tons. It’s capable of carrying loads of up to 50 tons, and runs on a diesel–electric engine.
The AutoStrad robot’s ‘brain’ consists of a navigation system and a pilot controller. These feed information to what’s called the task controller, which then provides commands to the machine controller. The machine controller is responsible for the actual functions and actions of the AutoStrad. A separate safety system incorporates collision detectors and monitors the vehicle’s ‘health’.
The navigation system is twofold, with two independent systems that operate in fundamentally different ways. Having two systems that do not share any common information ensures the integrity of the system—any mistakes one system makes will be identified and compensated for by the other.
The first system uses a millimetre wave radar sensor that can operate through rain and airborne particulate matter. It communicates with beacons attached to the lighting towers of the terminal, receiving between four and 10 bearing observations per second. The second part of the navigation system is a real-time-kinematic global positioning sensor.

Each of the sensor systems are coupled with two different rate sensors that detect the AutoStrad’s speed, which is also important for determining the vehicle’s location and tracking its movement.
Reference
Rudroju Saikrishna

0 comments :

Post a Comment